MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.





  MECÃNICA GRACELI GERAL - QTDRC.





equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   G* =   /  G   /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / G* =  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.






                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []

G { f [dd]}  ´[d] G*          / .  f [d]   G*                            dd [G]



G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.






equação de Lippmann–Schwinger (em homenagem a Bernard Lippmann e Julian Schwinger[1]) é uma das equações mais utilizadas para descrever colisões de partículas – ou, mais precisamente, de espalhamento – na mecânica quântica. Pode ser usado para estudar o espalhamento das moléculas, átomos, nêutrons, fótons ou quaisquer outras partículas e é importante principalmente para o estudo de física óptica, atômica e molecularfísica nuclear e física de partículas, mas também para os problemas de espalhamento em geofísica. Ela refere-se a função de onda espalhada com a interação que produz o espalhamento (potencial espalhador) e, por conseguinte, permite o cálculo dos parâmetros experimentais relevantes (amplitude de espalhamento e a sessão de choque).

A equação mais fundamental para descrever qualquer fenômeno quântico, incluindo o espalhamento, é a equação de Schrödinger. Em problemas físicos esta equação diferencial deve ser resolvida com a entrada de um conjunto adicional de condições iniciais e/ou condições de contorno para o sistema físico estudado. A equação de Lippmann-Schwinger é equivalente à equação Schrödinger mais as condições de contorno para problemas típicos de espalhamento. A fim de incorporar as condições de contorno, a equação Lippmann-Schwinger deve ser escrita como uma equação integral.[2] Para problemas de espalhamento, a equação de Lippmann-Schwinger muitas vezes é mais conveniente do que a equação de Schrödinger.

A equação de Lippmann-Schwinger é, de forma geral, (na verdade são duas equações mostrados abaixo, uma para  e outra para ):

  / G* =  = [          ] ω           .

Nas equações acima,  é a função de onda de todo o sistema (os dois sistemas considerados como um todo colidem) em um tempo infinito antes da interação; e , em um tempo infinito após a interação (a "função de onda espalhada"). O potencial de energia  descreve a interação entre os dois sistemas em colisão. O Hamiltoniano  descreve a situação em que os dois sistemas estão infinitamente distantes e não interagem. As suas autofunções são  e seus autovalores são as energias . Finalmente,  é uma questão técnica matemática utilizada para o cálculo das integrais necessárias para resolver a equação e não tem nenhum significado físico.





Em matemática e em física matemática, os integrais de Slater são certos integrais de produtos de três harmónicas esféricas. Eles ocorrem naturalmente quando se aplica uma base ortonormal de funções à esfera unitária que se transforma de uma forma particular quando rodada em três dimensões. Estes integrais são particularmente úteis no cálculo de propriedades de átomos que possuem simetria esférica natural.

Formulação

Em conexão com a teoria quântica da estrutura atómicaJohn C. Slater definiu o integral das três harmónicas esféricas como um coeficiente .[1] Estes coeficientes são essencialmente o produto de dois símbolos 3j.

  / G* =  = [          ] ω           .

Estes integrais são úteis e necessários quando se fazem cálculos atómicos da variedade Hartree–Fock, onde elementos da matriz do operador de Coulomb e do operador de troca são necessários. Para uma fórmula explícita, pode ser usada a fórmula de Gaunt para polinómios associados de Legendre.

Note-se que o produto de duas harmónicas esféricas pode ser escrito em termos desses coeficientes. Expandindo esse produto sobre uma base de harmónica esférica da mesma ordem

  / G* =  = [          ] ω           .

pode-se então multiplicar por  e integrar, usando a propriedade conjugada e sendo cuidadoso com as fases e normalizações:

  / G* =  = [          ] ω           .e logo




  / G* =  = [          ] ω           .

Estes coeficientes obedecem a um número de identidades. Incluem:





  / G* =  = [          ] ω           .







Comments